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ABSTRACT 

Nucleon-nucleon scattering at large momentum transfer is analyzed 

within the framework of quantum chromodynamic quark and glum inter- 

actions. The spin dependence of the hadronic amplitude is found to be 

particularly sensitive to the underlying dynamical mechanisms. Detailed 

discussions of the quark interchange and Landshoff pinch singularity 

contributions are given for large angle pp, np and pb elastic scattering. 

A possible explanation is given for the large spin-spin correlations 

measured by Crabb et al. -- We also define a new SU(21 symmetry group, 

H-spin, which generalizes conventional helicity, and is an exact symmetry 

of the quark interchange process. 



-3- 

1. Introduction 

One of the most sensitive areas of possible application of quantum 

chromodynamics (9cD) and asymptotic freedom is the domain of exclusive 

processes at large momentum transfer, such as hadron scattering at large 

t and u, and elastic form factors at large t. The form of the hadronic 

amplitude in this region depends in detail on the interactions of the 

quark and glum constituents at short distances as well as the properties 

of the bound state wavefunction which allow the final state hadrons to 

be reformed at large momentum transfer. 

Part of the motivation for this work has come from the striking 

spin correlation in pp scattering recently measured at Argonne by Crabb 

etg.,' for polarized protons (plab * 11.75 GeV) scattering on a 

polarized target. A remarkable result is that at the largest mormItllID 

transfer (pi = 5.09 GeV2, ecm = 900), one finds that it is -4 times more 

likely for protons to scatter when their spins are both parallel and 

normal to the scattering plane than when they are anti-parallel: 

(1.1) 

This result is particularly interesting since it occurs in the same 

momentum transfer regime where the dimensional counting scaling law for 

fixed angle scattering appears to describe the data. For example, the 

recent measurements of Stone et al: 2 show that at 90°, -- 

g (np * hp) ~ s-1o.4o*o.34 

and 

-9.81t0.05 
2 (PP - PP) = s (1.2) 



for 10 < s < 22.4 GeV2. This is good agreement with the counting rule3 

g (A+B + C+D) = & fk/sl 
S 

where n = nA+nB+nC+nI, is the total number of initial and final 

constituent fields (n = 12 here). An overall fit to all available pp 

data4 for Itl. lu( > 2.3 GeV* gives s -9.7kO.5 f(e ) 
cm' Equation (1.3) 

is a consequence of scale-invariance of the underlying constituent 

interactions, and is not inconsistent with the whole range of exclusive 

scattering measurements, including meson-baryon scattering, meson photo- 

production, and elastic form factors. In QCD, the dimensional counting 

rules hold asymptotically for Feyoman diagrams involving the minimum 

number of off-shell quark and gluon exchanges. Logarithmic corrections 

can arise from the running coupling constant and higher order gluon 

exchange diagrsms.3 In addition, as first discussed by Landshoff, there 

are potentially important "pinch singularity diagrams" contributing to 

elastic hadron-hadron scattering which involve succession of nearly-on- 

shell quark-quark scattering amplitudes. The "Sudakov" form factors 

associated with these amplitudes in fact lead to an asymptotic 

damping6 of such contributions although, as we shall discuss in 

Section 3, they may be playing an important phenomenological role in 

the sub-asymptotic region. 

The consistency of the data with the predicted s -lo f(e-) behavior 

implies that a description of the spin dependence of pp scattering at 

large momentum transfer should be possible at the quark and gloon level. 

Moreover, asymptotic freedom implies that the basic subprocesses re- 

sponsible for the large momentum transfer can be cslcolsted in terms 

of perturbative diagrams. 
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As we shall show in this paper, it is difficult to find any single 

simple quark-gluon mechanism which can give a spin correlation larger 

than 2 for do/dt(tt)/do/dt(t+). However, it is possible that the inter- 

ference between two competing amplitudes may well describe the data. 

In addition to the fixed Bcm power law behavior and spin-dependence, 

there are other phenomenological parameters of exclusive scattering that 

can discriminate between different dynamical mechanisms: 

(a) the form of the angular dependence of f(It/s) in (1.31, 

(b) the flavor, isospin, and crossing dependence of the amplitude, 

as obtained from ratios such as do/dt(np + np)/do/dt(pp + pp) 

and do/dt($p + $p)/do/dt(pp + pp). 

The spin-dependence of nucleon-nucleon scattering is particularly sensi- 

tive to the detailed form of the theory since it depends on the way that 

spin information is transferred from the nucleon to its constituents as 

well as the spin couplings at the quark and gluon level. In this paper 

we shall explore the implications of these phenomenological constraints 

of fixed angle scattering for perturbative QCD. 

The outline of this paper is as follows. In the next section we 

make some remarks concerning a sum rule for the polarization asymmetries 

in proton-proton scattering and the sensitivity of elastic scattering 

to spin dependent effects. In Section 3 we review the general features 

of specific QCD mechanisms for exclusive scattering: gluon exchange, 

quark exchange (or interchange),! and the Landshoff triple qq-scattering 

pinch contribution. Specific predictions for spin correlations are given 

and compared with the date, and predictions for np and pp scattering are 

also given. Section 4 is devoted to the quark exchange model and the 
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idea of H-spin. The latter is a generalization of helicity and is an 

exact symmetry group for the quark interchange amplitude. 

2. Spin Effects in Nucleon-Nucleon Scattering 

It is interesting to observe that, independent of dynamics, there 

are always significant spin correlations in the elastic scattering of 

two identical fermions at ecnl = 90'. It is well known that time 

reversal and parity invariance only allow five independent proton- 

proton spin amplitudes. For the 90' scattering of identical particles, 

all amplitudes involving a single helicity flip (e.g., M(++,+-)) 

vanish. As we show in the Appendix this implies a sum rule for the 

polarization asymmetries: 

A, - AtQ - Ass = 1 (2.1) 

By definition 

A = 
g (44) + $ CM) - g (tc) - g (,4) 

ae 
g (4i) + 2 (tt) + g (tt) + 3 (+4) 

(2.2) 

where do/dt ($4) is the elastic cross section with initial spins both 

polarized along the beam (a) direction, Sz = Si = +1/2. Similarly, 

the spin asymmetry Ann refers to initial spins polarized along the 

normal (ii = 2) to the scattering plane, and Ass refers to spins 

polarized (sideways) in the plane (parallel to 9). In each case, the 

final spins are summed over. (Notice that AQ1? would have an overall 

minus sign if we had used cm helicities instead of Ss.) 

The sum rule implies that for 90' pp scattering, we cannot have 

simultaneously Ann = ALL = Ass = 0; i.e., there must always be some 
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spin asymmetry. In a model where the basic interactions are independent 

of the spin direction such as the constituent interchange model;/ we have 

A, = -Ati = -Ass = + 

i.e., do/dt(tt)/do/dt(tt) = 2 for spins normal to the plane. Thus 

particle identity induces a significant spin asymmetry. 

In a perturbative QCD model one generally expects that the double 

helicity flip amplitude MC-!+,--) is negligible at high energies. If 

we assume this is the case then 

A, = -Ass 

and the sum rule becomes 

2A, - App = 1 

(all angles) (2.4) 

(ecm = 900) (2.5) 

It is thus very important that measurements of A, and Aep both be made 

at 90* at the same energy; any deviation from 2A -Au - 1 = 0 would nn 

imply a significant contribution from the double helicity-flip ampli- 

tude and would tend to rule out a simple perturbative explanation of 

the data. For reference, in the case of 90* electron-electron scat- 

tering (QED in Born approximation, (mz/s * 0)). one has A nn = -Ass = 

l/9 and Apll = -719. 

Because of coherence and particle identity, large angle pp scat- 

tering is a sensitive test of spin effects. In contrast, in typical 

inclusive reactions, any spin correlation which is important at the 

quark-gluon level quickly becomes diluted when the hadronic wavefunction 

is taken into account; the net polarization of quark in a nucleon with 

a valence wavefunction [n> = 1q t q 4 q +> is l/3. 
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For example, consider the simplest QGD model where the nucleon- 

nucleon inclusive cross section for the production of large pt jets 
, 

can be computed from an incoherent sum of quark-quark cross sections. 

The spin asymmetry of the n-n cross section is then given by 

~04~~~~) = j dxl ] dx2 c AGqa,Nl(X1) AGq8,N2(X2) A(q,+J 
0 0 a.8 

(2.6) 

where A(qo,q 8 ) is the quark-quark spin asymmetry at s = xlx2s, i = x t 1 ' 
u=xu 2 l =nd 

AG q /N(x) 0 = 2 (qo4/N4) -E (qo+/N4) (2.7) 

gives the net number of quarks of flavor G and light-cone fraction x 

aligned with the nucleon spin. In the case of the proton, the quark 

valence wavefunction is completely determined by isospin and color 

symmetry and one has for a spin up proton 

N 5 N 
1 =- 

"4 3 ut = 7 
1 

Nd4 =? 
2 

Ndt =7 (2.8) 

Thus, averaging over x1 and x2, 

ji(p,p) = A c 1 = +A 8 
q,=qg 81 9,fqg [ 1 - = (2.9) 

where we have distinguished the cases of equal and unequal flavor 

quark-quark scattering. For gluon exchange in QCD the longitudinal 

spin asymmetry (averaged over color) is maximal at 90' 

AEE 5 
q,=qg = -ii (em = 90°) (2.10) 
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A ee 3 
q,#q* = - 5 @cm = 907 

i.e. : 

IAQa(pp)j s 0.036 (2.11) 

The above estimate is clearly quite crude, and can be circumvented 

if the distributions for spin-up and spin-down quarks do not have the 

same x dependence. For example, it has been suggested that a'quark with 

x-l will have the same spin as the parent n~cleon.~ Calculations have 

been done with selected quark distributions which do give spin asynnuetries 

in inelastic scattering larger than those estimated above.' 

3. Large Angle Scattering Mechanisms and Spin 

The spin-dependence observed by Crabb et al.1 -- is so striking that 

a new look at the possible mechanisms of large angle scattering is 

certainly required. In this chapter we shall review some basic mechanisms 

and discuss their consequences for spin correlations. 

A. Quark-Quark Scattering 

At first sight, the most obvious mechanism which can transfer large 

amounts of momentum between colliding hadron is the qq + qq scattering 

in impulse approximation. That is, one quark from one hadron scatters 

from another quark in another hadron, after which the quarks must share 

the transferred momentum with the other quarks in their respective 

hadrons if the hadrons are not to break up. It is easy to see that 

2 (PP+PP) = C s (qq+qq) F;(t) + (u-channel exch.) (3.1) 

where Fp(t) is the form factor and C 5 81 is a factor which counts the 



number of coherent diagrams. For the experiment of Crabb et al I 
- --, 

'lab = 11.75 GeV, ecm = 90' (s=23.8 GeV2, t=-10.1 GeV2), 

doexpt 
dt (pp+pp) = 1x 1o-5 mb . thus we need 

(GeV)2 ' 

s (qq + qq) r 100 mb/(GeV)* (3.2) 

This is many orders of magnitude too large to be understood in QCD; 

e.g., single gluon exchange (t-channel) gives 

g (qq-tqq) = 10 -3 mb!(GeV)2 

In fact, this is an over-estimate since single glum exchange between 

singlets vanishes. Even if this estimate could be circumvented, the 

angular distribution predicted by (3.1) is incompatible with the data; 

in particular vector gluon exchange implies that the Regge-behavior will 

stay close to aeff(t) w 1 for all t, whereas the data indicate that 

0 eff(t) 2 -1 at large t. 10 

Although it is possible that the qq+qq hand scattering subprocess 

could be important in high pT jet production experiments, it is unlikely 

that it plays any significant role in elastic scattering. 

B. Quark Interchange 

In addition to quark scattering via gluon-exchange processes, QCD 

also predicts that hadrons can scatter at large momentum transfer by 

quark exchange or interchange.' This is the leading QCD contribution to 

large angle Compton scattering. Although single gluon exchange is forbidden 

in lowest order, quark interchange is not, and one can easily see quark- 

interchange always occurs at a lower order in os than the lowest order 

allowed gluon-exchange. Wittenl' has shown that for N-color * m with 
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interchange is rigorously the leading dynamical mechanism 

scattering. 

The cross section of the singlet quark-interchange amplitude has the 

characteristic form 
7 

$ (AB+CD) = $ (A q+Cq) FiD(t) + (permutations) . (3.4) 

where s (Aq+Cq) is the amplitude for q hadron scattering at the reduced 

kinematics (see Fig. 1). For pp+pp scattering we take 

g (pq-cpq) = r F2(u) 
s2 p 

(3.5) 

which has the correct power dependence predicted by QCD, and corresponds 

to j=O behavior in the (diquark) u-channel. ThUS 

F2(t) F2(u) 
$ (PP-+PP) = C-p 

S2 

(3.6) 

where C counts the numbers of coherent diagrams, spin states etc. Although 

the amplitude is Feduced by l/3 for color, there are an enormous number 

of distinct coherent QCD diagrams which contribute to the quark-inter- 

change amplitude (see Fig. 2), where we include diagrams where gluons are 

exchanged between hadrons, as well as different flavor exchanges. Thu.5 

it is conceivable that the quark-interchange diagrams are sufficiently 

large as to account for the observed cross sections, although a reliable 

calculation of the normalization has not been given. Eq. (3.6) gives 

at large s and fixed ecm, 

do 
iiF = J- fMcm) * 

*lo 
f@cJ - (,_:,,2,," C3s7) 
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The best power-law fit to the pp+pp data4 gives s -9.7r0.5 over a large 

range of angles and energies and s -10.4 for np+np. 2 The angular de- 

pendenca predicted by (3.7) is compatible with the data for ItI, 1~1 ) 

4 GeVL. Equation (3.6) predicts asymptotic Regge behavior M 
PP-tPP - 

,a B(t), with a(t)+-2 at t-+-l, and B(t) +F(t) - c/t2, which is com- 

patible 10 with the data. Thus the quark-interchange amplitude appears 

to be dominant QCD mechanism, and is roughly compatible with the features 

of large-angle pp data. 

As shown in Section IV, the amplitudes for quark-interchange can 

be readily calculated in terms of their spin and isospin properties 

(see Table I). We have at 90° 

= l2 + (9' + w = .5g4 
22 + 12 + 12 

and 

A nn (PP+PP) = l/3 

(3.8) 

A nn (np+np) = -.439 (3.9) 

The first result can be compared with the measurement of Stone et a1.2 -- 

at 90°, 

(3.10) 

for 10 q s < 25 GeV2. At the highest energy measured, the ratio IS 

0.50~0.22, so the prediction .594 is not ruled out as a high energy 

limit. The Fp/pp cross section ratio at large angles is also consistent 

with crossing the interchange amplitude. 
7.10 
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The biggest failure of the interchange mechanism is in the spin 

correlation. For all angles we predict from Table I 

Am = 3 (3.11) 

where 

X 
= f(e) - f(n - 8) 

f(e) + f(n - e) 

Thus Ann is predicted to be within 2% of l/3 even when x=1 (x=0 for the 

form in Eq. (3.6)). The data clearly indicates that Ann is not a con- 

stant near l/3. 

Our expectation. then, is that there is an additional amplitude which 

strongly interferes with the quark-interchange contributions at Argonne 

energies; most plausibly, the quark-interchange contribution is dominant 

at asymptotic t and u , and the interfering amplitude is most important 

at low t and u. As we shall discuss below, the behavior of Afit and Ass 

in the interference region can play an important role in sorting out 

the possible sub-assymptotic contributions. 

These results for the quark interchange model have also been obtained 

by Farrar, Gottlieb, Sivers and Thomas, 12 who also consider the possibility 

that non-perturbative effects (quark-quark scattering via instantons) can 

explain the data. 

C. The Landshoff Contribution-Triple Gluon Exchange 

As Landshoff has discussed, 5 there are potentially large contribu- 

tions to nucleon-nucleon scattering which can arise from three successive 

nearly on-shell quark-quark scatterings, each through the angle 6 = Bcm. 
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The Landshoff amplitude has the form 

M = 
PP (3.12) 

there P2 is a hadronic scale-size, and the factor i arises from inte- 

gration in the Glauber-like nearly-real intermediate states. A very 

complete calculation of the Landshoff amplitude for triple glum ex- 

change in QCD has been given by Farrar and Wu. 5 cs ee also Ref. 6.1 

The most crucial prediction of the 3 gluon exchange mechanism is 

the angular distribution. Because of the vector exchange, the effective 

Regge behavior is again fired at a(t) G 1, in contradiction to the large 

angle data. It may be, following Landshoff, that these contributions 

play an important role for very large 6, where the ISR cross section is 

reasonably consistent with the predicted form do/dt + c/t8 (6 >> ItI). 

If we fit the Landshoff cross section to the final ISR cross section 

(s > 800 GeV', 4 < ItI < 12 GeV2), then this vector-exchange contribution 

extrapolates to a cross section at least lo3 times smaller than the 

s=40 GeV2 cross section near 90°, in addition to having an incompatible 

angular distribution. We also note that there is an additional suppres- 

sion of the qq+qq near-on-shell amplitude due to gluon corrections t0 

the q{g vertices not included in the Born approximation estimate. 6 

Asymptotically these quark form factor corrections yield an asymptotic 

power behavior in QCD which falls faster at fixed angle than the quark 

interchange contribution. For completeness we give the prediction of 

the Landshoff three gluon exchange contribution in Table II for the 

np+np and pp+pp spin amplitudes. As an illustration of the types of 

interference patterns possible, if the Landshoff amplitude is L(Sc,,,) 
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and the quark interchange amplitude is Q(scm), then at 90' the pp-pp 

spin correlation is 

Thus if L * 2Q, one can obtain a maximal spin correlation Ann * 1, 

%n E do/dt(ti)/do/dt(tt) + -. The Landshoff contribution alone gives 

Am$900) = .22, rnn = 1.56. We also note that if we choose L/Q = 1.491 

to give Am(pp) = .6 to agree with the Argonne data at plab = 11.75 GeV 

then one predicts 

2 bp * np) 

g (PP * PP) 
= 1.925 (3.14) 

which is incompatible with the Stone et a1.2 result. Given the above -- 

difficulties, especially the problem with the angular shape, we con- 

clude that the 3-gluon exchange Landshoff contribution is not playing 

an important role in the fixed angle scattering data. 

D. Meson Exchange Contributions 

Even though the coupling constant of a pion to a nucleon is large 

(g2/4n = 14) the contribution of single pion exchange to large angle 

scattering is small in the fixed angle region: 

$f = i(G)” F;(t) (3,’ 

= 10-l' mb/(GeW2 (3.15) 

compared to the data 110 -5 mb/GeV2, at s = 24(GeVj2, t = 10.4(GeV12. 
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However the Landshoff three-gluon exchange mechanism suggests 

another possibility. In the Landshoff amplitude, each qq+qq amplitude 

transfers l/3 of the exchanged momentum, i.e., ; z 1/9t, s 2 1/9s. 

Even for t w 10 GeV', ; is still reasonably small, and only relatively 

low energy qq+qq kinematics are involved. Thus rather than perturba- 

tive QCD, we should consider a more conventional description of the 

qq+qq amplitude as far as the Landshoff contributions are concerned. 

It is clear from dispersion theory, that the qq+qq amplitude 

receives contribution from t-channel meson exchange, n, o, p, w. A, etc.; 

in addition to more complicated cut contributions. The complete analysis 

of the Landshoff diagram, which requires three M qq-qq amplitudes, is thus 

very complex. We know from our previous analysis that the contribution 

of three elementary vector exchanges gives aeff(t) g 1 , and an angular 

dependence which is difficult to reconcile with the observed large angle 

data. 

We thus turn our attention to the scalar and pseudoscalar meson 

exchange contribution [or alternatively, Reggeon exchange with aeff(t)-- 

01. The coupling of a II or a o to a quark can be normalized if we 

assume impulse approximation 

g nw <N+ Ix: y5 : q 1 N+> = gnNN $ y5 7 uN 

We then find 

C”” 0 3 2 &TN -= 
4n 

--zz 
3 4s 

(3.16) 

(3.17) 

i.e., a reasonably large coupling constant. The same remarks can be 

made for the o. We have not attempted to absolutely normalize the 
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Landshoff contribution from these contributions, but because of the 

small momentum transfer involved, it is possible that multiple meson 

exchange contributions can make a significant contribution to the large 

angle amplitude, at least for It\ > 1 to 2 GeV*. 

The most striking characteristic of the multiple n or o exchange 

contribution is the presence of the spin-flip amplitude M(--,-HI. 

This implies Ann # -Ass and the breakdown of the 90' identity~Aee = 

2Ann- 1. Thus we re-emphasize the importance of measurements of Ape 

and A, at the same large angle pp+pp kinematics. 

At intermediate ranges, o exchange will dominate n exchange 

because its larger coupling. The contribution to quark-quark scat- 

tering from o exchange has the form 

; M&d+) = - 
i-L( 

g2(f) 

for massless quarks, where g'(t) represents the corrections to the 

vertices. We shall assume a monopole form, g'(c) = g$(l- G/M*) with 

M - .47 GeV2,L3 2 or 911' - 4 GeV as a typical illustration. We are 

using the sigma to approximate the forces in the scalar-isoscalar 

channel and experience here 14 seems to indicate that a low mass, mo = 

400 XeV, is best. This is roughly the same size as the constituent 

quark mass, or the kinetic energy of the quark within its confined 

state, and we will be consistent if we neglect it. 

Then, using Landshoff formula (3.121, the t-channel contribution 

is 

M 
PP 

= & (1-t/9M2)-3 Z P(z) (3.19) 
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where k is a constant and z = cos ecm. Note that the intermediate 

states include A and N* excitations. It is straightforward to compute 

all of the helicity amplitudes for the 3 pion exchange. If we consider 

this contribution, together with the quark interchange amplitudes, then 

for PP*PP, 

MC++, -HI = Q(z) + Q(-z) 

MC-- s +I-) = P(z) + PC-a) 

MC+-, +-I = $ Q(z) + g Q(-z) + P(-a) 

MC-+.-+) = z Q(z) +$ Q(-z) + P(z) (3.20) 

where P(z) is given by Eq. (3.19) and we shall take Q(z) = Q(-z) = 

F(t)F(u) = (l-t/.71 GeV')-'(l-u/.71 GeV*)-* for the quark inter- 

change contribution. We then have 

Ann(e~+ee) = 
4Q(P+5 + Z(Q+?)(Q+P) 

4Q2+(P+ii)2+(Q+P)2+(Q+~)2 ' 
(3.21a) 

and 

A~~(PP+PP) = Ass(pe+ep) = 
-2(Q- P) (Q-F, 

4Q*+ (P+?)+(Q+P)'+(Q+p")' 

(3.21b) 

where F = PC-r). The triple o exchange or quark interchange 

contributions alone each give (at 90') Ann = l/3 and AL1 = -l/3, but 

together they can interfere to produce a striking polarization corre- 

lation (see Fig. 3). The relative magnitude of P/Q = 4.11 at s = 23.9 

GeV', ecrn = 9D" was chosen to give Ann = .69, rnn = 5.45. The corres- 

ponding prediction for ALL is also given in Fig. 3. At the above 



kinematics, AIla = -0.56. The particular model that we have here gives 

AM = Ass at all angles. 

We can also predict the parameters of the np+np cross section, 

although this aspect of the model is less reliable since the contribu- 

tions of a in addition to o exchange will lead to a complicated isospin 

structure. However, the triple o exchange does give u(np)/o(pp) = l/3, 

in agreement with Stone et al. 2 
-- 

The above model is, of course, oversimplified and is given for 

illustrative purposes. One easy change to make is to modify the energy 

dependence of the sigma exchange amplitudes by treating the exchanged 

particles as Regge poles. This would introduce a factor (l+exp Isa(;)) 

into each of the three exchanges. The energy dependence is then quite 

different. For example. if we have a trajectory which passes through 

zero near the value of c that is correct for 90' scattering at plab = 

11.75 GeV/c. and if the trajectory has unit slope, then a(i) changes by 

0.36 unit when we drop to plab = 8 GeV/c (s = 17 GeV*), and the real part 

of the (l+exp iTa( factor has only 40% of its maximum value, thus 

reducing the interference with the real quark interchange amplitude. 

Although the above calculation of quark interchange plus triple-o 

exchange is too simple, it possesses the general features which seem 

to be required to understand the data. The dominant feature of the 

model is the presence of two interfering amplitudes which are roughly 

equal at s 3 20 to 30 GeV', with different energy dependences and 

roughly similar broad angular dependency at large scales. The likely 

candidate for the amplitude which is dominant at high energies is the 

quark interchange contributions. There is much more uncertainty about 

the dominant low energy contribution, but triple meson exchange seems 
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to be a reasonable possibility. A more ambitious calculation will 

require consideration of a general combination of spin exchanges, phases, 

and absolu'te normalization, but the presence of scalar or pseudo-scalar 

exchanges predicts a large M(--,i-b) amplitude; comparisons of the Att 

and A nn spin correlations will clearly,be central for unraveling this 

question. 

We should remark that while the spin averaged pp elastic cross 

section does show the s -10 behavior predicted by the CIM, there are 

oscillations about this behavior. 15 A plot of s lo do/dt(90') versus s 

shows maxima a factor of 2-3 about the minima is shown in Fig. 5. One 

minimum is at s = 19 GeV2 and the following maximum is at s = 26 GeV 2 . 

The experiment' which prompted this investigation is at s = 23.8 GeV*. 

We might guess that the peak of the oscillation is connected to the 

same interfering process which gives the large asymmetry. Then the 

asymmetry will rise further with a small increase in energy; the results 

of asymmetry measurements at plab = 12.75 GeV/c (s = 25.7 GeV 2 
) will be 

quite interesting. 

4. The Constituent Interchange Model and R-Spin 

We have concluded that quark exchange, or quark interchange, is the 

dominant process for nucleon-nucleon elastic scattering at high energies 

and large angles. In this section, we will draw out the predictions 

of this model for the scattering of polarized nucleons. Figure 4 gives 

a picture of the process, with the momenta and helicities labelled. 

There are two ways that we shall obtain our results. The first iS 

by straightforward counting of the ways and probabilities of emChanging 
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quarks of a given flavor and helicity. The second method is more 

elegant and can be used to derive additional results, and relies upon 

a symmetry of quark exchange which is an SU(2) based on helicity 

rather than ordinary spin. It is called H-spin and is defined in 

detail below. 

A. Quark Counting 

At the outset, it is useful to remember that the nucleon consists 

of three valence quarks, whose wavefunctions are completely symmetric 

in space, and antisymmetric in color. The spin-flavor (or spin-isospin) 

part of the wavefunction is symmetric and for a proton is given by 16 

6 P+ = 2”; u; d; + 2"; d): u; + 2d;u; u; 

- uruYdb - u;d;u; - d;u;u; i t t 

ur uYdb - t 4 t ur dy ub - d: u; u; + i t (4.1) 

The arrows refer to spin up or down along a stated direction. We can 

get the neutron wavefunction by changing d -+ u and u + -d, and we can 

get the opposite spin or helicity states by appropriately changing the 

spins or helicities of each quark. The elastic scattering amplitudes 

will of course contain factors due to color and to recombining the 

quarks into the proper spatial wavefunction. But since these factors 

do not depend on either the flavor or helicity of the nucleons we 

shall ignore them. We shall also ignore exchanges of non-valence 

quarks: their contribution to the scattering amplitude falls by a 

higher power3 of s than the contribution due to valence quarks, and 

will be small at high energy. 
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Let us begin by scattering two positive helicity protons upon each 

other. Since the elementary process in QCD is gluon exchange, none of 

the quarks can flip helicity, and the final protons must both have 

positive helicity. Note also that the two exchanged quarks must have 

identical flavor and helicity. Then by considering the overlap of the 

exchanged quark state with the final protons, one can see that the 

amplitude 

<ct) T) ft> = (N; + N* + N;+ + N;-) f(s.t) U- (4.2) 

where f(s,t) comes from the color and space part of the wavefunctions. 

and N u+ is the number of up quarks with positive helicity in a positive 

helicity proton etc., and 

N 5 
u+ = 3 

N 1 = - 
U- 3 

1 
Nd+ = 7 

2 
Nd- = 5 (4.3) 

ThU.5, 

<ttlTl++> = ix 31 x f(s,t) (4.4) 

For proton-proton scattering, one must add the amplitude obtained when 

(PC, Xc) and (pd. Xd) are interchanged in Fig. 4, and after so doing 

we have given the result in Table I. 

Let us also consider explicitly the case where on proton has 

positive and one proton has negative helicity; Xa.Ab = +,-. When the 

upper and lower protons in Fig. 4 maintain their helicity (Xc, Ad = 

+,-) then the interchanged quarks must again have identical flavor 

and helicity, and one can obtain 
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<+- 1 T I+-> = (2N,NU-+ 2Nd+ ,d- N ) f(e.,t) =+14X f(s,t) (4.5) 

On the other hand, if the upper and lower protons each flip helicity 

(Ac)'d = -+I, then the interchanged quarks still must have identical 

flavor, and the quark that flows from proton 5 to proton &must have 

positive helicity while the other exchanged quark must have negative 

helicity. One gets, explicitly, 

<-+ITI+-> = ; x 17 x f(s,t) (4.6) 

After including the interchange c ++ d for identical protons, we obtain 

the results in Table I. Similar results were obtained independently in 

Ref. 12. 

Since the quarks cannot flip their helicity the remaining two 

independent amplitudes, MC-+,++) and M(--, H) are both zero. 

Having gained experience with the protons, the case of np elastic 

scattering is straightforward, with the results given in Table I. 

B. H-Spin 

In certain scattering problems it is convenient to generalize the 

concept of helicity to include a full SU(2) group with helicity flip 

operators in addition to the conventional helicity. We call this SU(2) 

algebra H-spin, and we define it as follows: the z-component or 

longitudinal component of H-spin for a particle is its helicity. 

% 
1-c = HE =‘y7.p 

To define the helicity flip operators unambiguously there must be a 

preferred direction normal to the momenta of the particles. In two-body 

scattering problems this direction is just the normal to the scattering 

plane, denoted by the unit vector A. Thus we define 



-24- 

% 
= H, = $2.; (4.7b) 

The third-r "sideways" component of H-spin is then uniquely defined by 

the,commutation rules to give 

H 
Y 

= Hs P +,x; 

The x component of H-spin is seen to be identical to the corres- 

ponding component of ordinary spin. However, the y and z components are 

different, since the direction of the axis depends upon the momentum of 

the particle and is different for different particles and for the initial 

and final states of the same particle. Furthermore for both HZ and H 
Y 

the configuration described as "parallel" or "antiparallel" spin for a 

pair of particles moving in opposite directions in the center-of-mass 

system are reversed from the case of ordinary spin. Thus for these 

components, parallel ordinary spin means antiparallel H spin and vice 

versa. 

Let us observe that the constituent interchange model is H-spin 

invariant. In. a model with quark interchange and quark helicity con- 

servation, the transition amplitude from initial hadron states Al and 

Bi to final hadron states Af and Bf can be written as 

<AfBf 1 T 1 A&> = c <Af1q~q81Ai)<Bflq~q,1Bi> f(s,t) (4.8) 
a.8 

where f(s,t) is independent of spin and flavor quantum nmubers, qh and 

q, denote the creation and destruction operators for a quark with quantum 

numbers o, and o includes flavor and helicity. The E-spin conservation 

can be made manifest by writing out just the helicity sum, 
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b&+1* b&+lB + &I-)* &&+ (A+)* (&)B 

+ cs+ P - - )* (41 9-lB (4.9) 

and noting that it contains only terms which are products of two H-spin 

scalars or scalar products of two H-spin vectors, (:)A* 61,. In terms 

of operators acting on the helicity indices of the quarks, we could 

write T as 

T = 3 c c [li lj +;i.zj]f(s,t) (4.10) 
IEAjEB 

and if we restore the sum on flavor (isospin), 

T = + iFA zB [Ii lj + :i-;j]ki lj + :i-:j] f(*,t) 

(4.11) 

The operators act on quark i in nuclear A and quark j in nuclear B; the 

unit operators will give the number of quarks. There is thus a full 

suC4)E = su(2)H ~'su(2)I symmetry in this case. This symmetry property 

leads to the following theorem: All predictions of the model are 

identical in the three comaonly used bases which correspond to HZ, Hx 

and Hy diagonal respectively. This follows because the three bases are 

obtained from one another by 90° H-spin rotations which leave the ampli- 

tude invariant. However, one must be careful in using the HZ and Hx 

bases because of the way the direction of H-spin is defined. 

Let us apply the theorem to the quantities A,,, Ale and Ass for the 

asymmetries in the total elastic cross sections, 

Aii = CO(H) - o(t+)l/Co(tt) + o(*+)l (4.12) 
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where o(tt) and u(t+) denote the cross sections for parallel and anti- 

parallel spins and i is either n, II or s. Then because of the reversal 

of parallel and antiparallel for Hy and HZ, our symnetry argument 

immediately gives the result 

A = -AeL = -Ass nn (4.13) 

At 90°, where the absence of the double-flip amplitude leads to the sum 

rule, 

A nn - Aall - Ass = I (4.14) 

we obtain the result 

Ann(900) = -A&90°) = -Ass(900) = $ (4.15) 

This general result follows only from the H-spin invariance of the 

amplitude of the constituent exchange model. It is independent of the 

wavefunctions used for the proton. In particular, there is no assumption 

of N(6) for the proton spin-isospin wavefunction. Thus if there is 

disagreement with experiment at 90°, then the constituent exchange model 

with helicity conservation is in trouble, and it cannot be saved by SlJ(6) 

breaking in the wavefunctions.. Some other mechanism must be present 

which violates H-spin conservation in the amplitudes. 

The proton-proton matrix elements can be fairly easily calculated 

using the H-spin formalism. If there is no helicity exchange, then only 

the first and last terms of Eq. (4.9), sunrmed over flavor, contribute 

and we can writ :e down directly, 

<P+P+l 

<P+P- I 

T 1 p+p+> = 
[ 

Nt+ + N2 2 
+ Nd+ + 

2 
U- N& 3 f(s,t) (4.16a) 

T 1 P+P-> = 
C 2NU+NU-+ 2Nd+N& 3 

f&t.) (4.16b) 
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Where there is a helicity flip at each vertex, we use the Wigner-Eckart 

theorem, 

<P-P+IT~P+P-> = + <P-lo-lP+> <P+IU+lP->f(*,t) 

= <P+lazIP+>':P+lo,IP+> f(s,t) 

= -No-)’ + (N~+-N~-)’ 1 f(s,t) (4.17) 

where (T acts on the quark constituents, C* = (ax + oy)Ifi, and a sum or 

flavor is implied in the middle steps. 

The neutron can also be included by purely algebraic techniques by 

noting that the transition amplitude is also isospin invariant, so that 

we have a SU(2)I x SU(2)H symmetry. (In fact, the bilinear products 

q:qS generate a full m(4), symmetry which can be exploited to make 

predictions for A production.) If there is no flavor interchange between 

the nucleons, we have 

<np+ I T I *+e+> zN,,+ Nd+ + 2Nu- *d- 1 f(s,t) = $ f(s,t) (4.18a) 

<np-IT)n+p-> = 2Nu-Nd+ 1 f(s,t) = 7 f(s,t) (4.18b) 

<*-P+I T 1 n+p-> = 2(Nu+-Nu-)(Nd+ -Nd-' f(s,t) = - $ f(s,t) (4.18~) 

Thus, all matrix elements are reduced to linear combinations of 

expectation values of matrix elements of number operators for the four 

quark states, u+, u-. d+, and d-. All the number operators above are 

for a positive helicity proton; we use isospin synnnetry to relate then 

to the neutron number operators. 

When there is flavor exchange between the nucleons, then 
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< p+n+ 1 T 1 *+P+> = $ <p+IT+l*+> <*+lT-lp+> f(*,t) 

= <P+IT,IP+> <P+IT,IP+> f(*,t) '(4.19a) 

= (Nu+ 2 - Nd+) + (N”- - Nd-’ 2 1 f(s,t) = ++ f(s,t) 

and similarly, 

I T 1 n+p- > = 2(Nu+-Nd+)(N U- -Nd-) f(s,t) = - $ f(s,t) (4.19b) 

1 TI *+p-> = (N,,+-NUT -Nd++NdJ2 f(s,t) = F f(s,t) (4.19c) 

The results given above in terms of the number operators depend only on 

being able to factor the spin-isospin wavefunction of the nucleon from 

the color and space wavefunctions, while the numerical results depend on 

the specific form of the wavefunction given earlier. 

We might remark that the scattering operator can be recast into a 

form where the matrices operate directly on the nucleon6 rather than on 

the quarks as in Eq. (4.11). It is 

T = 2+1;; 4 4 1 - z2 + + :I . T2 + i I$ . G2 T1 . T2 1 (4.20) 

where K = (Nu+- Nu- -Nd++Nd-)‘ and for the case of SU(6) symmetry 

K = 2519. 
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APPENDIX 

NN Scattering Amplitudes 

We define the scattering amplitudes using the Jacob-Wick 17 phase 

conventions. Without using parity, time reversal or identical particle 

symmet=y, there are sixteen independent helicity amplitudes, 

MOcad . Xaib) (0 , 0). Parity cuts this number in half, 

M&Xc, -ad , -Aa, -Ab)(B , 0) = r) M(XcXd 3 a,ab) (8 3 II- 0) 

(A-1) 

where n is unity for nUClSOnS, and is 

'c 'd = - (-1) 
Sc+Sd-Sa-S b 

n 
"a "b 

in general, where ei is the intrinsic parity and si the spin of particle 

I. The $ dependence may be removed by choosing a particular value and 

using 
17 

M(Xc'd' a b .A A )(e ,$) = ; ,T (J++)<XcXdITJIX,Xb> ei(x-U)' d;,,(e) 

(A-2) 

where A = Xa-Xb and p = Xc- Id. We will choose 0 =; (scattering in 

the y-s plane) so that the pairs of amplitudes related by parity are 

related with positive sign. 

Parity alone is sufficient to show that all the single flip spin 
18 

amplitudes are zero. 

Time reversal invariance will reduce the number of independent 

amplitudes to six, using 

MOaab , $x,)(e , a) = M(~c~d , y,)(e * IT- 4) (A-3) 



Finally, if we have identical particles, then there is one more inde- 

pendent relation, 

MC++, i-1 = MC++,-+) (A-4) 

so that there are only five independent helicity amplitudes. Also, for 

identical particles scattering at 90°, the last named amplitude must be 

zero. We choose our independent amplitudes to be 

M(++, ++) 

MC+-, +-) 

MC-+, +-) 

M(++ , +-) 

M(-- ,++) (A-5) 

If the elementary interactions conserve quark helicity, then the last 

two listed amplitudes are zero at all angles. 

The asymmetries defined,in the text can be expressed in terms of 

the helicity amplitudes by 

DxAnn = ZR&*(++,i+)M(--,++I + ZReM*@--.+-)M(-+,+-) + 41n(*,+-)12 

DxAet = -IM(+l-,tt)12 - (MC--+)I2 + lMh+--)12 + (M+V-)12 

DxAss = ZReM*(++,t+)lI(--,i+f - ZReM*&-,+-)M(-+,+-) (~-6) 

where 

D = IM(++,++)\'+ IM(--,i+)1'+ IM(+-,+-)I'+ ~MG+,+-)~2 + 4~M(++?--)~2 

For scattering of identical particles at 9D", we aLaY use MC+-,+-) = 

M(-+,t) to show that 

Am - ALL - Ass = 1 (A-7) 
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We shall also quote a relation for the "analyzing power", A. This 

is defined for scattering an unpolarized beam on a target polarized 

normal to the scattering plane. 

(~-8) 

The above formula is valid at all angles, and shows that if the under- 

lying process is helicity conserving, then the analyzing power is always 

zero. 
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Table I. Helicity amplitudes M(XcXd , X,Xb> for nucleon- 

nucieon scattering in the constituent interchange model. 

A. PP-+PP 

M(++,te) = $ [31 f&t) f 31 f(S,U)] 

M(t ,t) = + [14 f(S,t) + 17 f(S.U)] 

MC-+,+-) = $ [17 f(s,t) + 14 f(s.u)] 

B. nP*nP 

MC++,++) = $ [14 f(s,t) + 17 fb,d] 

MC+-,+-) = + [22 f(s,t) + 25 fk.,u)] 

MC-+,+-) = + c- 8 f&t.) - 8 f&u)) 

C. PP+;P 

MC+-, +-I = $ [31 f(u,t) + 31 f&s)] 

MC++,++) = $ [17 f(u,t) + 14 fb.s)] 

MC--e,+) = + [I4 f(u,t) + 17 f(",S)] 

D. Predictions for asymmetries at 90' (u = t = -is) 

Ann(pp) = -AIIII(pp) = -As,(pp) = l/3 

A,,(np) = -ALE(np) = -As,(np) = -0.439 



Table II. Helicity amplitudes resulting from applying the 
Landshoff mechanism 
Jp = O+, 

to triple glum exchange and triple 
I=0 meson exchange. Results for glum exchange 

at all angles are in Farrar and Wu, Ref. 5. P(z) is de- 
fined in the text. 

-3s- 

A. Triple glum exchange at 90° 

C=) PP*PP 

M(+k,+k) = L 

M(t,t) = 3/8 L 

MC-+,+-) = 3/8 L 

(b) nP+nP 

M(+k,d+) = l/2 L 

M(t,i-) = 3/8 L 

MC-+, -I-) = 0 

Cc) Predictions for asymmetries at 90' 

Am(pp) = -Ass(pp) = 0.22 AQ,(pp) = -0.56 

A,,(np) = -Ass(np) = 0 Aee(np) = -0.36 

B. Triple sigma exchange (any angle) 

(4 PP-+PP 

M(--,++) = P(Z) + PC-2) 

M(-+,t) = P(Z) 

MC+-,+-) = P(-z) 

(b) nP+nP 

M(-- , +b) = P(Z) 

M(4,C1 = P(z) 
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FIGURE CAPTIONS 

Fig. 1. Generic diagram for the constituent interchange model. 

Fig. 2. Some examples of graphs that can contribute to quark 

interchange. Each graph is the lowest order that will 

allow quark interchange and equal sharing of momentum 

among the quarks in each nucleon. Many more such graphs 

could be drawn. 

Fig. 3. Asymmetries for the illustrative model, which has triple 

sigma exchange amplitudes interfering with quark inter- 

change amplitudes. The data is Ann from Ref. 1. For 

this model, AQIL = Ass. 

Fig. 4. Generic quark interchange graph with momenta and helicities 

labelled. 

Fig. 5. Proton-proton scattering cross-section at 90' multiplied 

10 bys . From Sivers et al - -.I Ref. 7 and Ref. 13. 
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